
OCR Error Correction Using a Noisy Channel Model

Okan Kolak
Computer Science and UMIACS

University of Maryland
College Park, MD 20742, USA

okan@umiacs.umd.edu

Philip Resnik
Linguistics and UMIACS
University of Maryland

College Park, MD 20742, USA

resnik@umiacs.umd.edu

ABSTRACT
In this paper, we take a pattern recognition approach to correct-
ing errors in text generated from printed documents using optical
character recognition (OCR). We apply a very general, theoretically
optimal model to the problem of OCR word correction, introduce
practical methods for parameter estimation, and evaluate perfor-
mance on real data.

General Terms
OCR error modeling and correction

Keywords
OCR, noisy channel, parameter estimation, pattern recognition

1. INTRODUCTION
Optical character recognition (OCR) provides the means to make

printed material available for on-line retrieval [16] and to extract
valuable language data from hardcopy sources such as printed dic-
tionaries [7]. Unfortunately, despite the claims of commercial ven-
dors, OCR error rates are far from perfect, particularly as we move
to more challenging languages such as Chinese and Arabic [8].
Moreover, almost all available systems are black boxes, and may
not even permit customer-speci£c retraining. These constraints
suggest an approach to OCR performance improvement based on
post-processing of system output.

In this paper, we take a pattern recognition approach to correct-
ing errors in OCR-generated text. We apply a very general, theoret-
ically optimal model [14] to the problem of OCR string correction,
provide practical methods for parameter estimation, and evaluate
performance on real data.

2. OCR ERROR CORRECTION
Our pattern-recognition approach treats OCR as within the frame-

work of the noisy channel model. Noisy channel approaches view
a recognition problem generatively: the £rst step is to model the
process by which an observed sequence of symbols O is generated

HLT 2002 San Diego, California, USA
.

from a true underlying sequence of symbols T , and the second, at
run time, is to identify the true sequence that is most likely given
a particular observed sequence. More formally, given observed O,
one seeks to £nd the T that optimizes

Pr(T |O) =
Pr(O|T) Pr(T)

PrO

Since Pr(O) is constant across all possible T , we can ignore it.
We focus on error correction at the word level: the problem is to

identify the true word T given an observed word O in the output
of an OCR system. In the approach presented here, we actually
optimize Pr(O|T), which re¤ects two assumptions. First, we are
assuming that there are no word-level merge or split errors (e.g.
misrecognizing forgive as for give) — in the Appendix we
give an algorithm for linking tokens in ground truth data with to-
kens in OCR output in the presence of missing/extra tokens.1 Sec-
ond, optimizing Pr(O|T) to £nd the best Pr(T |O) is justi£ed by
assuming that Pr(T) is uniform; we will take up better prior esti-
mates for Pr(T) in future work.

Words O and T are presumed to be strings over a given alphabet
of characters. Character-level splits and merges (e.g. recognizing
m as in or cl as d) are approximated as combinations of insertion,
deletion, and substitution errors.

2.1 OCR Error Correction as Syntactic Pat-
tern Recognition

Oommen and Kashyap [14] introduce a general framework for
syntactic pattern recognition that is well suited to the problem of
OCR error correction. They provide a probabilistic generative model,
M∗, that characterizes P (O|T) for input and output strings T and
O over a £nite alphabet A. They also give an ef£cient dynamic pro-
gramming algorithm for calculating this probability of transform-
ing one string to another.2

M∗ is de£ned in terms of three probability distributions. The
quanti£ed insertion distribution, G, controls insertions during the
transformation process; in the most general case, it can be condi-
tioned on the input string. The quali£ed insertion distribution de-
£nes the probability Q(a), a ∈ A, that symbol a will be inserted,
given that an insertion will be performed. The substitution and
deletion distribution S(b|a) governs the probability that symbol a
in the input string will be transformed into symbol b in the output
string; deletion is represented as a transformation into a special null
symbol, λ. Let us de£ne and illustrate the generative process step
by step, supposing the input string T is abc.

1. Randomly determine z, the number of insertions, using G.
1Doermann et al. [7] discuss learning-based approaches to zoning
and segmentation.
2We have modi£ed their notation slightly for consistency with ours.

Let us say z is 2 in this case.

2. Insert z instances of the special insertion symbol ξ into ran-
domly selected positions in T , giving T ′.

Let us say we randomly selected positions 0 and 2, giving us
ξabξc.

3. Randomly and independently substitute non-ξ symbols in T ′

using S to get T ′′.

Suppose that a is substituted for a, λ substituted for b, and
d is substituted for c. This gives us ξaλξd. Recall that λ is
the special null symbol that is used to represent deletion.

4. Randomly and independently transform all occurrences of ξ
in T ′′ to symbols in A using Q, giving O′.

Assume the £rst ξ is transformed into e, and the second one
is transformed into f, giving eaλfd as O′.

5. Remove all occurrences of λ from O′, giving O.

We £nally get eafd, which is the output string O.

Oommen and Kashyap [14] prove M∗ is stochastically consis-
tent, optimal, and that it attains the information theoretic upper
bound, and they do a simple study in the domain of correcting ty-
pographical errors using a simple uniform distribution for insertion
and a confusion matrix for substitution. To our knowledge the work
we are presenting here is the £rst published attempt at obtaining
empirical parameter estimates for their model.

3. PARAMETER ESTIMATION
We assume that parameters of M∗ are to be estimated from pairs

〈t, o〉, representing noisy channel input and output. In our setting
t is the true word and o is the token recognized by the OCR al-
gorithm, and maximum likelihood parameter estimation requires
estimating event frequencies based on the word pairs. Since there
are many ways of transforming t into o, it is necessary to distribute
credit among all the possible sequences of events for the pair.

We investigated two methods for doing so. A simple £rst ap-
proach is to compute the lowest cost edit sequence based on edit
distance, and assign all the weight to the events in that sequence. A
second approach is to do iterative estimation over all sequences via
an expectation-maximization (EM) approach [6].

3.1 Estimation Based on Levenshtein Distance
We base edit distance estimation (EDE) on picking the edit se-

quence for each 〈t, o〉 with the lowest Levenshtein edit distance
[10]; this may not be optimal, but it is a likely sequence and ef£-
cient to compute. In our experiments, we assigned 0 cost to copy,
and unit cost to insertion, deletion, and substitution events. Once
the edit sequences are computed, calculating the event counts from
edit sequences is quite simple. We smooth parameter estimations
using Witten-Bell discounting [17].

3.2 Estimation based on Translation Models
It is interesting to note that our parameter estimation problem

shares a great deal with the estimation problem for the IBM sta-
tistical machine translation models [2, 3]. For example, Figure 1
shows a word-level alignment representative of the IBM models
and a character-level alignment consistent with M ∗. Moreover, ef-
£cient parameter estimation algorithms for the IBM models have
already been implemented in the GIZA++ software package [13].3

3For an introduction to the IBM translation models, see [9]

This suggests the possibility of using translation models as the ba-
sis for parameter estimation in the new setting of OCR error cor-
rection.

Maryliken’tdoI

Mariepasaime n’Je c x a i n p l e

e x a m p l e s

Figure 1: Examples of Alignment in Translation and OCR

The match between models is not perfect; for example, symbol
re-ordering is crucial in translation but not OCR, and the IBM fer-
tility model allows one-to-many symbol alignments (splits) but not
many-to-one (merges). However, by treating characters as “words”
in the translation model’s vocabulary, it is possible to use unmod-
i£ed IBM-style model training on a parallel corpus of “sentence”
pairs 〈t, o〉. The trained IBM model parameters can then be used to
estimate the event counts to be used in maximum likelihood param-
eter estimation for G, Q, and S. We call this strategy translation
model estimation (TME). EDE and TME are different in the way
they estimate the event counts, but the rest of the computation is
the same.

Estimation of the frequency of insertion counts is done using the
Viterbi alignment between OCR and ground truth characters. All
the OCR characters that are mapped from NULL, and all but one
of multiple characters that are mapped from a single ground truth
character are counted as insertions. For instance, if ground truth
symbol a is mapped to symbols p and q, we can assume there is
one insertion; however, we cannot tell which OCR symbol is the in-
serted one.4 Therefore, we use the translation probability of NULL
to a particular symbol as an approximation to that symbol’s inser-
tion probability. It is only an approximation, since it ignores the
insertion cases that do not involve NULL. Speci£cally, we estimate
the insertion count of a symbol s as

insertionCount(s) = round(translationProb(NULL, s)

× TotalInsertionCount)

Note that we have three sets of insertion counts:

1. Total insertion count

2. Insertion count for each character

3. Insertion count frequencies

and they need to be consistent with each other. Informally, the total
number of insertions implied by both insertion counts of symbols
and frequencies of insertion counts should be consistent with the
total insertion count. More formally:

TotalInsertionCount =
∑

i>0

insertionCountFreq(i) × i

=
∑

s∈{symbols}

insertionCount(s)

where insertionCountFreq(i) is the number of edit sequences
with i insertions.

We estimate the total number of insertions and insertion count
frequencies together, so that they are consistent. We then round
insertion counts for some symbols up or down to make their sum
consistent with the total insertion count.
4We are ignoring less likely cases such as one deletion with two
insertions.

For substitution counts, we will use the translation probabilities.
However, deletion is considered a special case of substitution, and
there is no symbol-to-NULL translation probability; therefore, we
use the 0-fertility probability of a symbol to estimate its deletion
count. If a symbol s appears n times in the corpus, then its deletion
count is estimated as

deletionCount(s) =

round(symbolCount(s) × fertilityProb(s, 0))

Once having accounted for deleted symbols, we can distribute the
remaining counts to substitutions. This means that substitution
count of a symbols s with a symbol t is estimated as

substitutionCount(s, t) =

round((symbolCount(s) − deletionCount(s))

× translationProb(s, t))

Note that for any symbol, the sum of deletion and substitution
counts should be equal to the symbol count for that symbol.

symbolCount(s) =

deletionCount(s) +
∑

t∈{symbols}

substitutionCount(s, t)

This consistency is trivially achieved by setting the symbol count to
the number imposed by deletion and substitution counts. Also note
that we ignore the consistency of our estimated counts and actual
counts in the data for simplicity, since it is not crucial for validity
of our estimates.

4. EVALUATION
We performed several sorts of evaluations of our approach. First,

as a preliminary evaluation on arti£cial data, we performed a “real-
ity check” experiment very similar to Oommen and Kashyap’s [14]
study. The goal here was to see how well the parameter estimation
techniques could recover a set of known parameters by training on
a data set generated arti£cially using those parameters. Our results
were very similar to Oommen and Kashyap’s. We created our train-
ing data set by using M∗ with a £xed set of parameters similar to
theirs to generate a noisy version of 30158 common English words
with lengths between 7 and 14 characters. We then estimated the
values of the parameters using our two training methods, varying
the quantity of training data. The Kullback-Leibler (K-L) distance
between the parameter estimates and the true parameters that gen-
erated the data are given in Figure 2 as a function of the quantity
of training data. There was no signi£cant difference between EDE
and TME training methods; both methods perform quite well when
the M∗ model is known to be a good characterization of the data.

In our second evaluation scenario, largely because the IBM trans-
lation modeling framework made it an easy experiment to perform,
we looked at whether or not a straightforward statistical MT de-
coding approach would succeed in recovering an original ground
truth string from its OCRed counterpart. Treating characters as
“words” in the vocabulary, we used the CMU-Cambridge Toolkit
[5] for language modeling, GIZA++ for translation modeling, and
the ISI ReWrite Decoder [12] for decoding. This approach per-
formed very poorly, with decoder output on a test set rarely produc-
ing the ground truth word, possibly because it does not require that
the decoded sequence of characters actually form a word. Modi-
fying the language model component could solve the problem, but
for the time being we are not pursuing this route.

Instead, our third evaluation scenario was to take an incorrectly
recognized word w and to select the correct word d from a dic-

K−L Distance to Actual Parameters

Training Data (words)

0 5000 10000 15000 20000 25000 30000

D
is

ta
nc

e

0

1

2

3

4

5

6

7

EDE TME

Figure 2: K-L Distance between Original and Learned Param-
eters

1−Best Recognition Accuracy

Training Data (words)
500 1000 2000 5000 10000 21186

A
cc

ur
ac

y
P

er
ce

nt
ag

e

0

10

20

30

40

50

60

70

80

90

100

EDE_Long TME_Long EDE_Short TME_Short

Figure 3: Accuracy of 1-Best Recognition for OCR Data

tionary D by ranking the choices according to PrM∗(w|d).5 We
present accuracy £gures for selecting the correct d as the top choice
(1-best), and as one of the top 3 choices (3-best).

For arti£cial training and test data, where noisy English strings
are generated from ground truth English words as described in the
£rst evaluation, above, the 1-best recognition accuracy was around
96%. This con£rms that both training methods perform quite well
in an arti£cial scenario where the generative process is known to be
an instance of the M∗ model.

More realistically, we also experimented on actual OCR data
generated by scanning a hardcopy of the book of Genesis in French
using a commercial OCR package, OmniPage 8.0 (which supports
French). Measuring against ground truth, the word error rate on
these data is approximately 20%. We used disjoint training and test
sets, varying the size of the training data to explore sensitivity to
training set size; the test set included 423 misrecognized words.
We experimented with a short dictionary (1005 words) and a long
dictionary (4300 words) in order to explore sensitivity to the num-
ber of alternatives for d. The number of valid-word errors was 8
for the short dictionary and 17 for the long dictionary, and these are
not included in accuracy computations. The results in Figure 3 and
Figure 4 respectively show the percentage of the time that the cor-
rect word d is the £rst choice, and the percentage of the time that
it occurs among the top 3 choices. Actual word counts are given in
Table 1 and Table 2.

Dashed horizontal lines in the £gures are baseline performance
of picking d as the word with the lowest Levenshtein edit distance.
Baseline 1-best recognition accuracy is 41.20% for the long dictio-
nary and 33.25% for the long one; for the 3-best case, the numbers

5Incorrect tokens are identi£ed because they are not in the dictio-
nary. As in many approaches to spelling correction, we are not
considering valid-word errors here; see Section 5.

Training Long Dictionary Short Dictionary
Size EDE TME EDE TME
500 233 247 272 275

1000 258 261 293 293
2000 247 268 292 305
5000 253 273 291 301
10000 263 270 297 303
21186 261 279 296 306

Table 1: 1-Best Recognition Count for OCR Data

3−Best Recognition Accuracy

Training Data (words)
500 1000 2000 5000 10000 21186

A
cc

ur
ac

y
P

er
ce

nt
ag

e

0

10

20

30

40

50

60

70

80

90

100

EDE_Long TME_Long EDE_Short TME_Short

Figure 4: Accuracy of 3-Best Recognition for OCR Data

Training Long Dictionary Short Dictionary
Size EDE TME EDE TME
500 313 309 348 341

1000 322 328 354 355
2000 324 333 361 372
5000 323 338 357 363
10000 307 341 359 374
21186 327 340 358 372

Table 2: 3-Best Recognition Count for OCR Data

are 59.27% and 47.53%, respectively. The difference between our
methods and the baseline is clear: we nearly double the baseline
performance one would obtain in correcting OCR word errors by
picking the word in the dictionary with the lowest Levenshtein edit
distance. In addition, TME training consistently performs a bit bet-
ter than edit distance training (The difference is statistically signif-
icant when aggregated across all experimental conditions, but not
condition-by-condition). This is most likely because EDE ignores
all but one of the possible edit sequences that could transform an
original word to the noisy one, and it may also re¤ect the fact that
the IBM translation models are able to capture the split errors in
OCR.

The £gures suggest that the size of the candidate dictionary has
a signi£cant effect on accuracy, hence one can expect to improve
accuracy by using a clever candidate selection mechanism or in-
corporating evidence from a language model. We were interested
to observe that the results do not improve much with the size of the
training data amount: training with 2000 words produces reason-
able results, which makes practical the creation of manually gener-
ated ground truth for training.

5. RELATED WORK
We are unaware of published work on post-recognition error cor-

rection for OCR generated text, nor of other work that combines the
theoretical guarantees of M∗ with the practical aspects of our esti-
mation methods. The spelling correction literature provides meth-
ods which could be applied to the OCR correction problem, how-
ever, so we brie¤y compare our method with some spelling correc-
tion methods.

Church and Gale [4] used probability scores for spelling correc-
tion for the £rst time. However, their work is limited to the cor-
rection of words with a single spelling error and cannot be used to
correct OCR text that may contain multiple errors per word.

Mangu and Brill [11] proposed a rule-based approach for spelling
correction. Unlike models based on character edit operations, their
method is capable of correcting valid-word errors. Moreover, the
output of the model is understandable by humans. However, it is
based on word usage errors and requires pre-speci£ed confusion
sets, which severely limits its utility for OCR correction.

Ristad and Yianilos [15] proposed a stochastic edit distance model
and methods to learn model parameters from a training corpus.
They achieved a much lower error rate for a word pronunciation
problem compared to non-probabilistic edit distance. Our method
is very similar; however, their model restricts the possible proba-
bility distributions, whereas the model we use permits arbitrarily
distributed syntactic errors.

Brill and Moore (B&M) [1] introduced an improved noisy chan-
nel model for spelling correction that allows arbitrary string-to-
string edit operations. They get better error correction results com-
pared to methods that use only character edits. The authors kindly
trained their system on two of our training corpora (with 2000 and
21186 words) and tested on our test data.6 Their method, unlike
ours, only trains on pairs containing recognition errors; there were
371 such pairs in the small (2000-pair) set and 3826 in the large
(21186-pair) set. The comparison between TME and their method
is given in Table 3. B&M performs signi£cantly better for the larger
training set, though the difference in performance for the smaller
training set is not statistically signi£cant.

We performed a more detailed analysis on the performance of

6Their spell checker had only been developed for and de-
bugged/tested on English, and was used on our French data without
modi£cation.

Training 1-Best 3-Best
Set Size B&M TME B&M TME

371/2000 281 268 333 333
3826/21186 327 279 365 340

Table 3: Recognition Counts for Brill & Moore vs. TME

EDE, TME, and B&M, for the large training set and 3-Best recog-
nition. We found that 26 of the test words could not be recognized
by any of the methods, 310 were recognized by all, and 25 were
recognized by two of the three. Each cell in Table 4 shows how
many words recognized by one method (rows) were not recognized
by the other methods (columns); for example, TME was correct on
12 words that B&M missed. The fact that all three methods are
recognizing some words not recognized by other methods means a
combination of the three might perform better. Although a straight-
forward voting scheme is not enough (only 325 words get a ma-
jority vote, lower than individual scores), some other combination
method may prove useful.

EDE TME B&M
EDE 0 6 10
TME 20 0 12
B&M 52 40 0

Table 4: Pairwise Exclusive Word Recognition Comparison

6. FUTURE WORK
We currently use uniform prior probabilities for the correction

candidates. Using a scoring and/or elimination method for candi-
dates, e.g., based on an n-gram language model for words, would
almost certainly improve performance. Such potential scoring meth-
ods and their effect on correction performance requires further work.

For some languages, necessary resources, including an appro-
priate online dictionary, may not be available. Creating correction
candidates with limited resources, possibly using the OCR docu-
ments being corrected, is very appealing and deserves further in-
vestigation.

7. CONCLUSIONS
We have presented an approach to string error correction that is

based on a model with attractive theoretical properties, contribut-
ing new techniques for empirical parameter estimation and investi-
gating application to OCR errors. The approach requires a prac-
tical quantity of manually generated training data, is ef£ciently
computed, and works signi£cantly better than the na΅ve approach
of correcting errors by £nding the most similar dictionary entry
according to simple edit distance. We observed that the size of
the candidate dictionary signi£cantly affects correction accuracy,
and, since the model provides well de£ned probabilities, the door
is open to integration with language model predictions or other
stochastic criteria for ranking likely correction candidates.

Acknowledgments
This research was supported in part by DARPA/ITO Cooperative
Agreement N660010028910 and Department of Defense contract
MDA90496C1250.

We are grateful to F. Och and H. Ney for GIZA++, D. Marcu
for the ISI decoder, P. Clarkson and R. Rosenfeld for the CMU-

Cambridge toolkit, E. Brill for his kind assistance in comparative
evaluation, and B. Byrne and B. Oommen for useful discussion.

8. REFERENCES

[1] E. Brill and R. C. Moore. An improved model for noisy
channel spelling correction. In 38th Annual Meeting of the
Association for Computational Linguistics, pages 286–293,
Hong Kong, China, October 2000.

[2] P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra,
F. Jelinek, J. D. Lafferty, R. L. Mercer, and P. S. Roossin. A
statistical approach to machine translation. Computational
Linguistics, 16(2):79–85, 1990.

[3] P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer.
The mathematics of machine translation: Parameter
estimation. Computational Linguistics, 19(2), 1993.

[4] K. Church and W. Gale. Probability scoring for spelling
correction. Statistics and Computing, (1):93–103, 1991.

[5] P. Clarkson and R. Rosenfeld. Statistical language modeling
using the CMU-Cambridge Toolkit. In ESCA Eurospeech,
1997.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Series B, 39(1):1–38,
1977.

[7] D. Doermann, H. Ma, B. Karagöl-Ayan, and D. W.Oard.
Translation lexicon acquisition from bilingual dictionaries.
In Ninth SPIE Symposium on Document Recognition and
Retrieval, San Jose, CA, 2002. to appear.

[8] T. Kanungo, P. Resnik, S. Mao, D. wan Kim, and Q. Zheng.
The Bible, truth, and multilingual optical character
recognition. submitted for publication.

[9] K. Knight. A statistical MT tutorial workbook, April 1993.
http://www.isi.edu/natural-language/mt/wkbk.rtf.

[10] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics Doklady.,
10(8):707–710, 1966.

[11] L. Mangu and E. Brill. Automatic rule acquisition for
spelling correction. In 14th International Conference on
Machine Learning, pages 187–194. Morgan Kaufmann,
1997.

[12] D. Marcu and U. Germann. The ISI ReWrite Decoderrelease
0.7.0b.
http://www.isi.edu/˜germann/software/ReWrite-Decoder/.

[13] F. J. Och and H. Ney. Improved statistical alignment models.
In ACL00, pages 440–447, Hong Kong, China, October
2000.

[14] B. Oommen and R. Kashyap. A formal theory for optimal
and information theoretic syntactic pattern recognition.
Pattern Recognition, 31:1159–1177, 1998.

[15] E. S. Ristad and P. N. Yianilos. Learning string edit distance.
IEEE Transactions on Pattern Recognition and Machine
Intelligence, May 1998.

[16] Y.-H. Tseng and D. W. Oard. Document image retrieval
techniques for chinese. In Fourth Symposium on Document
Image Understanding Technology, pages 151–158,
Columbia, MD, April 2001.

[17] I. H. Witten and T. C. Bell. The zero-frequency problem:
Estimating the probabilities of novel events in adaptive text
compression. IEEE Transactions on Information Theory,
37(4):1085–1093, July 1991.

APPENDIX
Word Pairing with Missing Word and Extra
Word Errors
The parameter estimation methods we propose require word pairs
〈t, o〉 for training. Automatically extracting these word pairs from
OCR/ground-truth document pairs is not a trivial task owing to
missing and extra word errors. These errors can be caused by merg-
ing or splitting words as a result of whitespace recognition errors,
missing words, and misrecognizing stains and marks as words. The
possibility of having missing or extra words renders useless any
simple position-based pairing between OCR tokens and ground
truth tokens. Therefore, we designed a simple algorithm to com-
pute a likely pairing. The algorithm assumes that many words are
recognized correctly for each line in the OCRed document, and
uses these words as anchor points for pairing.

Correctly recognized words are identi£ed by £nding a sequence
of word copy, insertion, deletion, and substitutions operations that
converts ground truth into OCR version with the minimum cost.
Copied words in this edit sequence are assumed to be correctly rec-
ognized (and momentarily we will generalize this to non-identical
but similar words). Owing to the space requirements of the edit dis-
tance algorithm, we assume OCR and ground truth £les are aligned
at the line level, and work on one line pair at a time.

Let us present the algorithm using a sample execution where the
original (ground truth) line is a b c d e and the OCRed line is
p b q e r.

• Find an edit sequence that has the minimum cost. In case of
equality, the sequence with more copy operations is favored.

Substitution : a --> p
Copy : b --> b
Deletion : c -->
Substitution : d --> q
Copy : e --> e
Insertion : --> r

• For each copy operation, create a bracketed component on
both sides that contains only the copied word.

a [b] c d [e]
p [b] q [e] r

• Do the following for both the original and noisy lines:
– For each existing bracketed component, create a new brack-

eted component that contains everything to its right up to
the next bracket, or up to the end of the line if there is no
next bracket.

a [b] [c d] [e] []
p [b] [q] [e] [r]

– Create a bracketed component that contains everything
from the beginning of the line to the £rst existing bracket,
or to the end of the line if there is none.

[a] [b] [c d] [e] []
[p] [b] [q] [e] [r]

• For each bracketed component in the original line, pair its
contents with the corresponding (left-to-right) component in
the noisy line, ignoring empty bracket pairs.

‘a’ --> ‘p’
‘b’ --> ‘b’
‘c d’ --> ‘q’
‘e’ --> ‘e’
NULL --> ‘r’

Since pairing is based on the edit sequence generated by the edit
distance algorithm, one can tweak it by modifying the edit distance
algorithm or its parameters.

One such useful modi£cation is to use a similarity threshold in-
stead of exact match to decide if two words match. To give an ex-
ample, let to illustrate this be the original line and lo
ilustrate ths be the OCR line. With exact matching, we
would get the following edit sequence

Substitution : to --> lo
Substitution : illustrate --> ilustrate
Substitution : this --> ths

and the pairing to illustrate this → lo ilustrate
ths, where the whole string is mapped over as a single chunk.
However, if we assume that two words match if their edit distance
is less than 20% of the length of the longer one, the edit sequence
would become

Substitution : to --> lo
Copy : illustrate --> ilustrate
Substitution : this --> ths

giving the more desirable pairing to → lo, illustrate →
ilustrate, and this → ths.

Another useful modi£cation is to change the cost of the copy
operation. Assume the original line is a b c d e and the OCR
line is e p q r s. With 0 copy cost, we would get the following
edit sequence:

Substitution : a --> e
Substitution : b --> p
Substitution : c --> q
Substitution : d --> r
Substitution : e --> s

and the corresponding pairing would be a b c d e → e p q
r s. If we use -4 as the copy cost, the edit sequence would become

Deletion : a -->
Deletion : b -->
Deletion : c -->
Deletion : d -->
Copy : e --> e
Insertion : --> p
Insertion : --> q
Insertion : --> r
Insertion : --> s

and the pairing would be a b c d → NULL, e → e, and NULL
→ p q r s. By changing the cost of the operations, one can
tune how far an original word and its correctly recognized version
on the noisy side can be.

