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Abstract

Broad coverage, high quality parsers are available for only a handful of languages. A
prerequisite for developing broad coverage parsers for more languages is the annotation of
text with the desired linguistic representations (also known as “treebanking”). However,
syntactic annotation is a labor intensive and time-consuming process, and it is difficult
to find linguistically annotated text in sufficient quantities. In this article, we explore
using parallel text to help solving the problem of creating syntactic annotation in more
languages. The central idea is to annotate the English side of a parallel corpus, project
the analysis to the second language, and then train a stochastic analyzer on the resulting
noisy annotations. We discuss our background assumptions, describe an initial study on
the “projectability” of syntactic relations, and then present two experiments in which
stochastic parsers are developed with minimal human intervention via projection from
English.

1 Introduction

More and more frequently, researchers and developers in natural language process-
ing are confronted with a need to develop language technology components in new
languages. In light of the recent success of corpus-based approaches, the logical first
question to be asked is, “Where can I get some annotated data?” For many kinds of
linguistic problems, having annotated data in hand means being able to get off the
ground — which helps explain why the Linguistics Data Consortium’s list of “tools
and formats for creating and managing linguistic annotations” has 58 entries.1

† The authors gratefully acknowledge helpful discussions with Adam Lopez and Gina
Levow, the constructive comments of the anonymous reviewers, as well as publicly
available software used in this work. This research was supported in part by National
Science Foundation grant EIA0130422, Department of Defense contract RD-02-5700,
and ONR MURI Contract FCPO.810548265.

1 The list is maintained at http://www.ldc.upenn.edu/annotation/.
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One of NLP’s long standing central problems, syntactic parsing, illustrates the
importance of annotated resources. From the empirical studies of several state-of-
the-art statistical parsers, the common experience is that when training on manually
annotated Treebank data of different languages (Ratnaparkhi 1999; Bikel and Chi-
ang 2000), larger treebanks ensure better performances. Hidden behind the numbers
is the reality of what it takes to obtain the data: the 4,000 parse trees in Penn Chi-
nese Treebank Version 2 first appeared two years after the start of the project, and
the increase to Version 4 appeared three years after the release of Version 2.

One actively researched approach to this problem is to develop weakly super-
vised algorithms that require less training data, such as active learning (Herm-
jakob and Mooney 1997; Tang et al. 2002; Baldridge and Osborne 2003; Hwa 2004)
and co-training (Sarkar 2001; Steedman et al. 2003). In this article, we explore
an alternative: using parallel text as a means for transferring syntactic knowledge
from a resource-rich language to a language with fewer resources. The central idea
is to annotate the English side of a parallel corpus, project the analysis to the
second language, and then train a statistical parser on the resulting noisy annota-
tions. Annotation projection using parallel text has been accomplished for shallower
tasks(Yarowsky and Ngai 2001; Merlo et al. 2002; Yarowsky et al. 2001), but the
projection of tree structures introduces additional complexity. The success of the
approach hinges on two questions. First, is it possible to infer complex structures for
a second language from monolingual representations in English, with a minimum of
human intervention? And second, since automatic projection of dependencies leads
to noisy representations, can larger quantity offset lower quality when training a
stochastic parser?

Section 2 takes up the first of these questions, motivating the syntactic repre-
sentations with which we are concerned and the prospects for using English as a
basis for inferring representations in a second language. Section 3 describes an ini-
tial study considering the second question, developing and evaluating a stochastic
parser for Spanish. Section 4 tackles a more realistic scenario involving the acqui-
sition of a parser for Chinese, a language that is less similar to English. Section 5
concludes with a summary and directions for future work.

2 Projection of Syntactic Dependencies

We follow Lin (1998) in adopting dependency-based representations for the work
described in this article. Dependency representations have a number of desirable
properties that make them useful in NLP applications. First, they allow us to
characterize long-distance syntactic relationships between words. Even in the area
of stochastic language modeling (where “shallow” string-based approaches such as
n-gram models have dominated for decades), there is recent evidence suggesting the
value of syntactic structure (Chelba et al. 1997; Chelba and Jelinek 1998; Charniak
2001; Khudanpur and Wu 2000). Consider the following example from the Brown
Corpus:

The largest hurdle the Republicans would have to face is a state law which says that
before making a first race, one of two alternative courses must be taken.
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The relationship between hurdle and is exists over a long string-distance, owing to
an embedded relative clause; similarly, Republicans and face are separated in the
string by a sequence of auxiliaries and the infinitival to. As a result, the relation-
ships represented in the sentence are not captured well by any n-gram model with
tractable n. In contrast, the relationship between the subject NP and the predi-
cate is easily encoded locally if one can represent the relationships between phrases
rather than just among contiguous sequences of words.

Second, it is widely recognized that phrase structure representations provide an
implicit representation of the syntactic dependency relationships between words in
the structure — that is, asymmetric binary relations between heads and dependents,
capturing such grammatical relations as ’subject’, ’object’, ’modifier’, and the like.
Lin observes that syntactic dependencies, more than syntactic constituents, are
closely tied to the who-did-what-to-whom relationships of language. Since semantic
dependencies form a superset based on syntactic dependencies, measuring correct-
ness of dependencies rather than constituents is more likely to reflect how likely a
representation is to be interpretable.2 Moreover, Lin notes that in the parser evalu-
ation literature, standard measures based on phrase structure constituency usually
compare the phrase boundaries specified by the phrase structure grammar of a gold
standard test set to those of the candidate analysis. However, because constituents’
branching structure is not directly tied to semantic interpretation, it is unclear
how to assess the seriousness of missing, spurious, or crossing branches; in contrast,
each explicit link in a dependency representation captures a single head-dependent
relationship.

Finally, with respect to the projection of dependencies, the process we will de-
scribe carries information across languages with varying word orders; therefore it is
imperative to firmly separate precedence from the dominance structure that carries
semantic information. For example, the relative string order of a series of modifiers
of a head is irrelevant in a dependency representation — all are modifiers. By con-
trast, a constituency tree may require a stacked structure that would not translate
well if the word order were reversed in the second language (Fox 2002).

2.1 Projecting Dependencies

The above observations provide our motivation for developing an approach to cross-
language inference of syntactic representations using syntactic dependencies, rather
than syntactic constituents. Having made that choice, the success of syntactic an-
notation projection depends crucially on the question of whether or not the syn-
tactic dependencies in English sentences can reasonably be assumed to give rise to
corresponding syntactic dependencies in their second-language translations. This
assumption can be formalized as follows:

2 Dependency-based approaches to syntax have a long history in linguistics; see, e.g.,
(Mel’cuk 1988). The relationship between dependency and phrase-structure grammars
has been well studied in the linguistics literature (e.g. Abney(1995)) and localization of
lexical dependency constraints has proven useful in context-free parsing for constituency
representations (Collins 1997; Charniak 1999).
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Given sentence pair (E, F ) and a set of syntactic relations for E, where E = e1, . . . , en

is an English sentence and F = f1, . . . , fm is its non-English parallel, syntactic relations
(denoted as R(x, y)) are projected from English for the following situations:

• one-to-one if ei is aligned with a unique fx and ej is aligned with a unique fy, if
R(ei, ej),conclude R(fx, fy).

• unaligned (English) if ej is not aligned with any word in F , then create a new
empty word fy such that for any ei aligned with a unique fx, R(ei, ej) ⇒ R(fx, fy)
and R(ej , ei) ⇒ R(fy, fx).

• one-to-many if eiis aligned with fx, . . . , fy, then create a new empty word fz such
that fz is the parent of fx, . . . , fy and set ei to align to fz instead. We called this a
Multiply-Aligned Component, or (MAC).

• many-to-one if ei, . . . , ej are all uniquely aligned to fx, then delete all alignments
between ek(i ≤ k ≤ j) and fx except for the head of ei, . . . , ej .

• many-to-many decomposed into a two-step process: first perform one-to-many,
then perform many-to-one.

Leave unaligned words in F out of the projected syntactic tree.

Fig. 1. The Direct Projection Algorithm

f1 f2 f3 f5f4

English dependencies

English sentence

Alignment

Foreign language sentence

Projected dependencies

I got a gift for my brother

(a) (b)

Fig. 2. (a) Projecting a dependency tree from an English sentence to a parallel Basque
sentence. (b) Our projection system architecture.

Direct Correspondence Assumption (DCA): Given a pair of sentences E and F
that are (literal) translations of each other with syntactic structures TreeE and TreeF , if
nodes xE and yE of TreeE are aligned with nodes xF and yF of TreeF , respectively, and
if syntactic relationship R(xE , yE) holds in TreeE , then R(xF , yF ) holds in TreeF .

As stated, the DCA amounts to an assumption that the cross-language align-
ment resembles a homomorphism relating the syntactic graph of E to the syntactic
graph of F . Whether or not stated explicitly, the DCA is actually an underlying
assumption in most formal attempts to model cross-language correspondences in
syntactic relationships (Wu 1995; Alshawi et al. 2000; Yamada and Knight 2001;
Eisner 2003; Gildea 2003; Melamed et al. 2004; Smith and Smith 2004).

Table 1 illustrates the principle with the following English-Basque sentence pair
as an example:

(1) a. I got a gift for my brother
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Relation R Head xEng Modifier yEng Head xBsq Modifier yBsq

verb-subj got I erosi nik
verb-obj got gift erosi opari
noun-det gift a opari bat
noun-mod brother my anaiari nire

Table 1. Correspondences preserved in the English-Basque example.

b. Nik (i) nire (my) anaiari (brother-dat) opari (gift) bat (a) erosi (buy)

nion (past)

Observe that, given the indicated alignments of words, many of the English sen-
tence’s central relations carry over to the Basque sentence, despite the fact that the
languages are quite different.

The DCA gives rise to a straightforward projection procedure (Figure 1) in which
the dependencies in an English sentence are projected to the sentence’s translation,
using the word-level alignments as a bridge.3 Figure 2(a) depicts the resulting pro-
jected dependency tree when the Direct Projection Algorithm is applied to our
English-Basque example.

To investigate the reasonableness of the DCA, which one might characterize as the
“projectability” of English syntactic dependencies, we have conducted two exper-
iments under an idealized setting, using “perfect” (i.e. human-generated) English
parses and word alignments. In one study, one hundred English dependency trees
are projected onto their parallel Spanish sentences; in the other study, a set of 88
English trees are projected onto their parallel Chinese sentences. The projected
non-English trees are then compared with manually generated gold standard trees
(the development of the gold standards will be described in fuller detail later in the
main experiment section). For both Spanish and Chinese, we found similar results:
that the directly projected dependency trees yield many mistakes. For Spanish,
the unlabeled dependency F-score is 37%; for Chinese, the unlabeled dependency
F-score is 38%.

2.2 Post-Projection Transformation

Although the direct projection algorithm was not very successful by itself, many
of its errors did not implicate the DCA itself; rather, they highlighted the fact
that second-language parses required more than just the projection of the English
dependencies — they also required a certain amount of monolingual knowledge
specific to the projected-to language. For example, Chinese verbs are often followed
by an aspectual marker that is not realized as a word in English; because the Direct

3 Further details of this experiment can be found in our earlier work (Hwa et al. 2002).
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Direct Projection Projection + Transformation

English-Spanish 36.8 70.3
English-Chinese 38.1 67.3

Table 2. An evaluation of dependency structures projected from English under the
ideal setting of projecting from manually generated English dependency trees across
manually aligned words.

Projection Algorithm will only attach words on the basis of information projected
from English, those markers will always be left unattached in the Chinese parses.
Similarly problems arise with Spanish clitics (le, se, etc.), which are separated from
their verbs after tokenization. For example, a Spanish sentence Ella va a dormirse
would be tokenized as Ella va a dormir se, and projection from the corresponding
English sentence (she is going to fall asleep) would leave the word se unattached.

Error analysis led us to revise our projection approach to incorporate a small
set of correction rules to be carried out post-projection. The rules are expressed in
a tree-based pattern-action formalism, performing local transformations of a pro-
jected analysis on the non-English side. It is clearly an advantage to limit such
rules to those that can apply generally, across many construction types. Wishing
to avoid unending language-specific rule tweaking, we strictly limited the possible
rules, permitting them to refer only to closed class items (such as aspectual mark-
ers), to parts of speech projected from the English analysis, or to easily enumerated
lexical categories (e.g. pronouns, prepositions, Chinese measure words). Moreover,
we focused on rules motivated by general linguistic properties of the language. As
an example, the rule handling aspectual markers takes the following form:

• An aspectual marker should modify the verb to its left.

Thus, if fx, . . . , fy is a sequence of Chinese words aligned with an English verb, and
it is followed by fa, an aspect marker, then we make fa into a modifier of the last
verb fy. See the Appendix for more Chinese rules.

Viewing the problem from a higher level of linguistic abstraction made it possible
to find relevant cases in a short time and express the solution compactly: for the
idealized study, fewer than dozens of post-projection transformation rules (written
within a month in the worst case) captured the bulk of the missing language-specific
information. With the application of the transformational rules after the application
of the Direct Projection Algorithm, the resulting parses obtained an F-score of 70%
for Spanish and 67% for Chinese (Table 2).

Although these results obtained in the idealized scenario — starting with manu-
ally generated English parses and word alignments — they demonstrate the promise
of developing parsers via projection of syntactic dependency information from En-
glish. With only a few weeks of language-specific work, we obtained trees for two
non-English languages of a quality that would have been extremely challenging
(perhaps impossible) to obtain without the importation of syntactic dependency
knowledge from English by way of parallel translation.
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2.3 Our Projection Framework for Bootstrapping Parsers

The encouraging results from the pilot studies presented in the previous section
suggest that the projected trees, although imperfect, may be good enough to be
used as training data to bootstrap a new parser in the non-English language. Figure
2(b) lays out our complete framework. First, we need a sizable, sentence-aligned
bilingual text as training corpus. The English side of the parallel text is analyzed
by Collins’s (1997) Model 2 parser (trained on the Wall Street Journal portion of
the Penn Treebank) and then converted to a dependency representation based on
a standard head-table approach (Magerman 1994), using an algorithm similar that
of Xia and Palmer (2001).4 The parallel corpus is aligned at the word level using
the GIZA++ implementation of the IBM statistical translation models (Brown et
al. 1990; Al-Onaizan et al. 1999; Och and Ney 2003). We then project the En-
glish dependency structures across the word alignment to the non-English side in
accordance with our Direct Projection Algorithm.5 Next, we apply a small set of
language-specific post-projection transformation rules to address some language-
specific information. As discussed earlier, the set of post-projection transformation
rules is very small and only expresses general linguistic constructs, so it can be
developed within a short period of time (see Appendix). Finally, to address the
problem of propagating English parsing errors and word-alignment errors, we ap-
ply an aggressive filtering strategy to automatically prune out projected trees that
we predict to be of poor quality. These filtering criteria are discussed in more de-
tail in the experimental sections. The remaining set of projected trees becomes the
treebank that will be used to train a new dependency parser — we conduct our
experiments using a version of the Collins parser that has been adapted for de-
pendency treebanks (Collins et al. 1999). Once trained, the new parser is ready to
generate dependency analyses for unseen new sentences in that language. In the
next two sections, we evaluate the quality of parsers trained in this fashion.

3 Study I: Creating a Spanish Parser

In this section and the section that follows, we demonstrate the promise of the
approach in progressively more challenging scenarios. The first of these scenarios is
projection from English to Spanish in order to create a Spanish parser.

3.1 Experimental Setup

For this experiment, we used a parallel corpus of 100,000 English-Spanish sentences,
constructed by combining verses from modern-day Bible translations, a sample from
the Federal Broadcast Information Service (FBIS) English-Spanish corpus, and a

4 The Collins (1997) Model 2 parser can be downloaded at
ftp://ftp.cis.upenn.edu/pub/mcollins/misc.

5 Since the IBM models do not produce many-to-many word alignments, the Direct Pro-
jection Algorithm’s rules pertaining to many-to-many alignments are not activated.
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sample from the United Nations Parallel Corpus. A set of 200 sentence pairs was ex-
cluded from the training set to be used as development and test data (100 sentences
each). Because no Spanish treebank was available, we created a gold standard in the
following manner. Each sentence was first parsed automatically using a state-of-
the-art commercial Spanish parser based on constraint grammar (Karlsson 1990),
which produces dependency-like representations. We then asked two linguists with
extensive training in Spanish syntax to correct the parser’s output, e.g. writing a
parse tree from scratch in cases where it failed to create a parse, adding missing de-
pendencies for unattached words, or correcting head-dependent relationships. The
annotators were also asked to make stylistic adjustments that represented standard
dependency assumptions in the treebanking community — for example, we asked
them to represent the preposition rather than its object as the head of a preposi-
tional phrase (Xia and Palmer 2001; Zabokrtsky and Smrz 2003). The two linguists
worked independently of each other, and were not involved in any other aspect of
this experiment. Their annotations agree with each other with an average unlabeled
F-score of 84.7% over the development and test sentences.

3.2 Evaluation

Before evaluating the bootstrapped parser directly, we first repeated the study
performed in Section 2, this time under more realistic conditions using automat-
ically generated English parse trees and word alignments. Table 3 shows that, as
expected, with the introduction of additional errors from the English parser and
the word alignment model, the projected trees have more errors.6 However, the
degree of degradation is relatively low (a drop of 5% in F-score). For a baseline,
we generated dependency trees in which every word modifies the word to its left
(respecting the basic word order of the language, since Spanish is head initial). As
a point of comparison, we also passed the baseline trees through post-projection
transformation. If the transformation rules are too specific (such that they essen-
tially constitute a rule-based parser), they will help the baseline trees as much as
the projected trees. The baseline results show that this is not the case: the fact that
the automatically projected trees have much better performance than the baseline
suggests that lexical and syntactic knowledge has indeed been transferred over from
the English side to the Spanish side.

To decrease the chance of adding poor quality dependency trees into the pro-
jected treebank, we employed the following pruning criteria (based on tuning on
development set):

• Discard if more than 20% of the English words have no Spanish counterpart.
• Discard if more than 30% of the Spanish words have no English counterpart.
• Discard if more than 4 Spanish words were aligned to the same English word.

6 The alignment word error rate is 24.4%. We did not measure the English parser error
rate for this data; by inspection, we believe the output quality is comparable to that of
the standard PennTreebank test data, thus we expect the error rate to be 12-15%.
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Direct Projection Projection + Transformation

Baseline (mod prev) 31.0 39.1
Automatic 33.9 65.7
Manual (Ideal) 36.8 70.3

Table 3. An evaluation of dependency structures projected to Spanish from the output
of off-the-shelf softwares (automatic), compared against a baseline and an upper
bound — the ideal setting (from Table 2).

Method Corpus Train Size Parsing Performance

Baseline (mod prev) – – 33.8%
Stat. parser UN/FBIS/Bible (no filter) 98K sents 67.3%
Stat. parser UN/FBIS/Bible (w/ filter) 20K sents 72.1%
Commercial parser – – 69.2%

Table 4. A comparison of parsing performances of different approaches (measured
against two independent annotators)

Without filtering, the projection process results in a set of 98,000 projected depen-
dency trees; with filtering, the number of trees reduces to 20,000.

Table 4 summarizes the experimental results of training a Spanish parser from
the noisy projected treebank. We compared the bootstrapped parsers (one trained
on the filtered corpus and one on the unfiltered corpus) and the commercial parser’s
output.7 The parsers are evaluated on their parsing performance on the test sen-
tences, using the unlabeled F-score as a metric. The table shows that with the help
of linguistically informed effort over a short period of time, projection of syntactic
dependencies across a parallel corpus yields performance that is comparable with a
state of the art rule-based commercial system that presumably took considerably
longer to construct.

4 Study II: Creating a Chinese Parser

Although the results from Section 3 are encouraging, it is important to find out
how the idea will hold up under more stringent conditions. Spanish and English
are similar enough that automatic word alignment methods can be expected to
perform reasonably well; and in general their syntactic structures can be expected

7 The scores were computed after applying a set of (reversible) deterministic transforma-
tional rules on the commercial parser’s outputs to minimize purely stylistic differences.
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to be somewhat similar compared to other language pairs. In addition, although
we made every effort to create a fair test set, it is small, and not an independently
constructed test set; therefore, there is always the possibility of unintended bias. To
address these issues, we now consider the more challenging task of bootstrapping a
Chinese parser using projection across English-Chinese parallel text.

4.1 Experimental Setup

The parallel corpus used for training in this experiment consists of 240,000 sen-
tence pairs from FBIS.8 Automatic word alignment for English-Chinese is much
more difficult than English-Spanish. Comparing against the manually aligned gold
standard, we estimate the word alignment error rate to be 41%, as contrasted with
the English-Spanish alignment error rate of 24.4%.

For evaluating the projected Chinese parser, we derived the gold-standard parses
in our development and test set from the Penn Chinese Treebank Version 2. This was
done by automatically converting the Treebank’s constituency parses of the Chinese
sentences into syntactic dependency representations, using the same constituency-
to-dependency algorithm we used for English trees in Section 2.3.9 We reserved
a small subset of the Treebank data for development purposes (sentences from
sections 001-015, 038, 039, 067, 122, 191, 207, 249). The remaining sentences whose
lengths are 40 words or less were used as test data, resulting in a large test set of
about 2800 sentences. The average sentence length of the test set is 20.6 words.

4.2 Evaluation

As in the English-Spanish study, we first evaluate the quality of the projected
Chinese dependency trees — repeating the pilot study in Section 2, but under
more realistic conditions. The results are summarized in Table 5. This study echoes
our earlier findings for Spanish. As before, the baseline performs poorly, even after
post-projection transformation.10 The degradation in the quality of the projected
trees from using automatic methods is more pronounced. This is due to both the
dissimilarity of the language pair and the increase in the number of word alignment
errors.

Next, we evaluate the parser trained from the projected treebank. Table 6 com-
pares the results. Because English-Chinese word alignments are more prone to er-
ror, filtering out badly aligned sentences is even more important. In addition to
the criteria mentioned earlier, we also factored in criteria such as the number of

8 In keeping with common practice in statistical machine translation, to improve the
quality of word alignment, we appended an English-Chinese word list (LDC) to the
parallel text during (and only during) alignment.

9 The strategy was validated by a human linguist performing the same process on the
development data set; the agreement rate with the human-generated dependency trees
was 97.5%. This led us to be confident that Treebank constituency parses could be used
automatically to create a gold standard for syntactic dependencies.

10 Because Chinese is head-final, the baseline is for each word to modify the word to its
immediate right.
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Direct Projection Projection + Transformation

Baseline (mod next) 35.9 43.1
Automatic 26.3 52.4
Manual (ideal) 38.1 67.3

Table 5. An evaluation of dependency structures projected to Chinese from the out-
put of off-the-shelf softwares (automatic), compared against a baseline and an upper
bound — the ideal setting (from Table 2).

Method Corpus Train Size Parsing Performance

Baseline (mod next) – – 35.1%
Baseline + transformations – – 44.3%
Stat. parser FBIS (w/ filter) 50K sents 53.9%
Stat. parser ChTB (new in v4) 10K sents 64.3%

Table 6. A comparison of parsing performances of different approaches (measured
against unseen test set taken from ChTB v2.)

cross-dependency links, the number of nodes remaining unattached even after the
post-projection transformation, and the number of words that could not be part-of-
speech tagged. Out of the 240,000 sentence pairs, only 50,000 sentences remained
after filtering.11 The bootstrapped parser’s performance is squarely between the
baseline (modify-next plus transformations) and the upper bound obtained by train-
ing on noise-free dependency structures derived from the Penn Chinese Treebank
Version 4.

To determine how the bootstrapped parser compares with a parser trained on hu-
man annotated data, we analyze the upper-bound parser by examining its learning
curve. Figure 3 plots the learning curve of a parser trained on manually annotated
data. The more labeled training sentences the parser receives (x-axis) the better
its performance on test data (y-axis). We see that the bootstrapped parser has
the same level of parsing performance as a parser trained on over 2000 noise-free
dependency trees.

11 In a follow up experiment, we found that, assuming equivalent word alignment qual-
ity, reducing the parallel corpus to one-fifth of the full size (such that after filtering,
10,000 sentences remained) resulted in an absolute degradation of only 1.4% in parsing
performance. This suggests that the technique is also likely to be robust for smaller
corpora.
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5 Conclusions

It is not easy to build treebanks that support training of stochastic parsers. Abeillé
(2003) presents an informative picture of the state of the art for treebank annota-
tion. From evidence across a range of projects, it appears that acquiring 20,000-
40,000 sentences — including the work of building style guides, redundant manual
annotation for quality checking, and so forth — can take from four to seven years.
The research presented here constitutes a successful first step in applying the an-
notation projection approach to syntactic representations. In contrast to the focus
in research on tree-to-tree or bilingual grammar models (Wu 1997; Eisner 2003),
we produce not a model but a treebank, which can be used for stochastic parser
training or as the starting point for manual correction (Marcus et al. 1993).

As Figure 3 illustrates, even for a difficult case like Chinese, the annotation pro-
jection approach produces trees that contain enough information for a stochastic
parser to get past the initial steep climb up the learning curve. Our experiments
showed that the parser performance from an automatically projected Chinese tree-
bank is only a few points below what one would obtain after one or two years of
manual treebanking, while requiring less than one person-month writing manual
correction rules to account for limitations in projecting dependencies from English.

The process of performing this research has exposed the importance of distin-
guishing what can be projected versus what can only be learned on the basis of
monolingual information in the language to be parsed. In current research, we are
exploring the possibility of starting with a small, manually produced seed corpus
in order to provide the key monolingual facts, and iteratively improving that cor-
pus using information projected from English. For example, in the English-Chinese
case, the trees projected from English may make it possible to confidently identify
many of the verb-argument relations, and a small number of confidently annotated
Chinese trees may suffice to teach the parser how to identify attachment points for
aspectual markers.
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Appendix: Post-Projection Rules for Chinese

Post-projection rules can be categorized into two types: those that connect the unattached
nodes (because they have no English equivalent) to the projected dependency structure,
and those that modify malformed dependency structure (due to many-to-one mapping and
other divergences discussed in Section 2.1). To reduce repetitions in the list of rules below,
we only highlight the guiding linguistic constraints rather than specific instantiations of
the rules.

• The word preceding the token di should be labeled as an adverb, and modifies di,
and di modifies the verb to its right.

• An adverb should modify a verb (unless it is modifying di, and it takes no modifier
itself).

• An aspectual marker should modify the verb to its left.
• The verbs have and be must have an object modifier.
• Numbers (both ordinal and cardinal) and determiners should either modify a noun

to its right or a verb to its left (because the head nouns are sometimes topicalized).
• A measure word modifies a number of a determiner preceding it. It can take no

modifer of its own.
• A conjunction needs two or more coordinating words of the same tag type. If a

conjunction has exactly two modifiers but they do not coordinate, assume it was
the result of a tagging error.

• The token de should modify a noun to its right. If it is modified by a noun to its
left, then it is acting as a possessive marker, otherwise it is used as a relative clause
marker.

• The token etc signals an apposition. It bridges between a (usually implicitly) coor-
dinated list of phrase to its left and a base noun phrase to its right.

• A preposition must have an object modifier, which is typically a noun. If a location
preposition co-occurs with a location marker, the location marker is the object
modifier for the preposition; the location marker requires an object modifier to its
left (i.e., between the preposition and the location marker).

• Some prepositions appear in pairs (such as from ... to ...). In these cases, the first
preposition should modify the second.

• Default – Chinese is head final, so in any unresolved Multiply-Aligned Components,
the right-most word should be the head.


