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Abstract
In this paper, we present a generative probabilistic op-

tical character recognition (OCR) model that describes
an end-to-end process from generation of the true word
sequence to the noisy output of an OCR system. The
model is designed for use in error correction in a post-
processing framework, treating the OCR system as a
black-box. The focus of the system is to make OCR out-
put more useful for computer usage. We present a £nite-
state machine based implementation of the model, and
demonstrate its ability to signi£cantly reduce word and
character error rates.

1 Introduction

Despite the increase in the amount of text stored in elec-
tronic form, vast quantities of information is still avail-
able primarily, or only, in print. Some important ap-
plications of the NLP technology, such as rapid, rough
document translation in the £eld [1] or information re-
trieval from scanned documents [2], can depend heav-
ily on the quality of optical character recognition (OCR)
output. The alternative of using the raw images remains
to be elusive for practical systems [3].

Unfortunately, the output of commercial OCR systems
is far from perfect, especially when the language in ques-
tion is resource-poor [4]. And efforts to acquire new
language resources from hardcopy using OCR [5] face
something of a chicken-and-egg problem. The problem
is compounded by the fact that most OCR system are
black boxes that do not allow user tuning or re-training

In this paper, we describe a complete, probabilistic,
generative model for OCR, motivated speci£cally by (a)
the need to deal with monolithic OCR systems, (b) the
focus on OCR as a component in NLP applications, and
(c) the ultimate goal of using OCR to help acquire re-
sources for new languages from printed text. After pre-
senting the model itself, we discuss the model’s imple-
mentation, training, and its use for post-OCR error cor-
rection. We provide evalution results for error correc-
tion; and conclude with a discussion of related research
and directions for future work. Kolak et al. [6] provides

a more complete description and evaluation of the work
presented here.

2 The Model
We propose a generative model that relate an observ-
able OCR output string O to an underlying true word
sequence W . Probability of this relationship, P (W,O),
is decomposed by Bayes’s Rule into steps modeled by
P (W ) (the source model) and P (O|W ) (comprising
sub-steps generating O from W ). Each step and sub-
step is completely modular, so one can ¤exibly make use
of existing sub-models or devise new ones as necessary.
Note that the process of “generating” O from W is a
mathematical abstraction, not necessarily related to the
operation of any particular OCR system.

We begin with preliminary de£nitions and notation,
illustrated in Figure 1. A true word sequence W =

Figure 1: Word and character segmentation

〈W1, . . . ,Wr〉 corresponds to a true character sequence
C = 〈C1, . . . , Cn〉, and the OCR system’s output char-
acter sequence is given by O = 〈O1, . . . , Om〉.

A segmentation of the true character sequence into
p subsequences is represented as 〈C1, . . . , Cp〉. Seg-
ment boundaries are only allowed between characters.
Subsequences are denoted using segmentation positions
a = 〈a1, . . . , ap−1〉, where ai < ai+1, a0 = 0, and
ap = n. The ai de£ne character subsequences C i =
(Cai−1

, . . . , Cai
]. (The number of segments p need not

equal the number of words r and C i need not be a word
in W .)

Correspondingly, a segmentation of the OCR’d
character sequence into q subsequences is given by
〈O1, . . . , Oq〉. Subsequences are denoted by b =



〈b1, . . . , bq−1〉, where bj < bj+1, b0 = 0, and
bq = m. The b de£ne character subsequences O j =
(Obj−1

. . . Obj
].

Alignment chunks are pairs of corresponding truth and
OCR subsequences: 〈Oi, Ci〉, i = 1, . . . , p.

Generation of True Word Sequence. The generative
process begins with production of the true word se-
quence W with probability P (W ); for example, W =
〈this, is, an, example, .〉. Modeling the underlying se-
quence at the word level facilitates integration with NLP
models, which is our ultimate goal. For example, the
distribution P (W ) can be de£ned using n-grams, parse
structure, or any other language modeling tool.

From Words to Characters. The £rst step in trans-
forming W to O is generation of a character sequence
C, modeled as P (C|W ). This step accommodates the
character-based nature of OCR systems. It also al-
lows mapping of different character sequences to the
same word sequence (case/font variation) or vice versa
(e.g. ambiguous word segmentation in Chinese). We
output ‘#’ to represent visible word boundaries (i.e.
spaces). One possible C for our example W is C =
“This#is#an#example.”

Segmentation. Subsequences C i are generated from
C by choosing a set of boundary positions, a. This sub-
step, modeled by P (a|C,W ), is motivated by the fact
that most OCR systems £rst perform image segmenta-
tion, and then perform recognition on a word by word
basis. Word merge and split errors are modeled at this
step as well. A possible segmentation for our example is
a = 〈8, 11, 13〉, i.e. C1 = “This#is#”, C2 = “#an#”, C3 =
“#ex”, C4 = “ample.” Notice the merge error in segment
1 and the split error involving segments 3 and 4.

Character Sequence Transformation. Our character-
ization of the £nal step, transformation into an observed
character sequence, is motivated by the need to model
OCR systems’ character-level recognition errors. We
model each subsequence Ci as being transformed into
an OCR subsequence Oi, so

P (O, b|a,C,W ) = P (〈O1, . . . , Oq〉|a,C,W ). (1)

and we assume each Ci is transformed independently,
allowing

P (〈O1, . . . , Oq〉|a,C,W ) ≈

p∏

i=1

P (Oi|Ci). (2)

Any character-level string error model can be used to
de£ne P (O i|Ci); this is also a logical place to make use
of con£dence values if provided by the OCR system. For
our example Ci, a possible result for this step is: O1 =
“Tlmsis”, O2 = “an”, O3 = “cx”, O4 = “amp1e.”; b =
〈7, 10, 13〉. The £nal generated string would therefore be
O = “Tlmsis#an#cx#am1e.”.

Assuming independence of the individual steps, the
complete model estimates joint probability

P (O, b, a, C,W ) =

P (O, b|a,C,W )P (a|C,W )P (C|W )P (W ) (3)

P (O,W ) can be computed by summing over all possible
b, a, C that can transform W to O:

P (O,W ) =
∑

b,a,C

P (O, b, a, C,W ). (4)

3 Implementation
We have implemented the generative model using a
weighted £nite state model (FSM) framework, which
provides a strong theoretical foundation, ease of integra-
tion for different components, and reduced implementa-
tion time thanks to available toolkits such as the AT&T
FSM Toolkit [7]. Each step is represented and trained as
a separate FSM, and the resulting FSMs are then com-
posed together to create a single FSM that encodes the
whole model. Details of parameter estimation and de-
coding follow.

3.1 Parameter Estimation
The parameter estimation methods we devised assume
that a training corpus is available, containing 〈O,C,W 〉
triples. Speci£c parameter estimation methods for each
individual step is desribed in the following sections.

Generation of True Word Sequence. We use an n-
gram language model generated using CMU-Cambridge
Toolkit.[8] as the source model for the original word se-
quence. The model is trained on the W from the training
data and encoded as a simple FSM. We made a closed
vocabulary assumption to evaluate the effectivenes of our
model when all correct words are in its lexicon. There-
fore, although the language model is trained on only the
training data, the words in the test set are included in the
£nal language model FSM.

From Words to Characters. We generate three dif-
ferent character sequence variants for each word: up-
per case, lower case, and leading case (e.g. this ⇒
{THIS, this, This}). For each word, the distribu-
tion over case variations is learned from the 〈W,C〉 pairs
in the training corpus. For words with very low or zero
occurence counts, we back off to word-independent case
variant probabilities.

Segmentation. Our current implementation makes an
independent decision for each character pair whether to
insert a boundary between them. The number of bound-
ary insertions are limited to one per word for practical
reasons. The probability of inserting a segment bound-
ary between two characters is conditioned on the charac-
ter pair, and estimated from the training corpus.



Table 1: Post-correction WER and CER and their reduction rates under various conditions

Conditions Results
LM WC SG EM WER (%) Red. (%) CER (%) Red. (%)

Original OCR Output 18.31 - 5.01 -
Unigram 3 options None Sect. 9 7.41 59.53 3.42 31.74
Unigram 3 options None Sect. 1-9 7.12 61.11 3.35 33.13
Unigram 3 options None Sect. 5-9 7.11 61.17 3.34 33.33
Trigram 3 options None Sect. 5-9 7.06 61.44 3.32 33.73
Trigram Best case 2 way Sect. 5-9 6.75 63.13 2.91 41.92

Character Sequence Transformation. This step is
implemented as a probabilistic string edit process. The
confusion tables for edit operations are estimated using
Viterbi style training on〈O,C〉 pairs in training data. Our
current implementation allows for substitution, deletion,
and insertion errors, and does not use context characters.

Final Cleanup. At this stage, special symbols that
were inserted into the character sequence are removed
and the £nal output sequence is formed. For instance,
segment boundary symbols are removed or replaced with
spaces depending on the language.

3.2 Decoding
Decoding is the process of £nding the “best” W for an
observed (Ô, b̂), namely

Ŵ = argmax
W

{max
a,C

[

P (Ô, b̂|a,C,W )P (a|C,W )P (C|W )P (W )]}.(5)

Decoding within the FSM framework is straightforward:
we simply compose all the components of the model in
order, and then invert the resulting FSM. This produces
a single transducer that takes a sequence of OCR charac-
ters as input, and returns all possible sequences of truth
words as output, along with their weights. The most
probable sequence among those returned by the compo-
sition can be used as the output of the post-OCR correc-
tion process. Alternatively, the resulting lattice or N -best
list can easily be integrated with other probabilistic mod-
els over words.

4 Experimental Evaluation
Although most researchers are interested in improving
the results of OCR on degraded documents, we are pri-
marily interested in developing and improving OCR in
new languages for use in NLP. A possible approach to
retargeting OCR for a new language is to employ an ex-
isting OCR system from a “nearby” language, and then to
apply our error correction framework. For these exper-
iments, therefore, we created our experimental data by
scanning a hardcopy Bible using both an English and a
French OCR system. (See Kanungo et al. [4] and Resnik
et al. [9] for discussion of the Bible as a resource for mul-
tilingual OCR and NLP.) We have used the output of the

English system run on French input to simulate the situ-
ation where available resources of one language are used
to acquire resources in another language that is similar.

It was necessary to pre-process the data in order to
eliminate the differences between the on-line version that
we used as the ground truth and the hardcopy, such as
footnotes, glossary, cross-references, page numbers, etc.
We have not corrected hyphenations, case differences,
etc.

Our evaluation metrics for OCR performance are
Word Error Rate (WER) and Character Error Rate
(CER), which are de£ned as follows. The results re-
ported are obtained by ignoring character case.

WER(Wtruth,WOCR) =

WordEditDistance(Wtruth,WOCR)

|Wtruth|
(6)

CER(C,O) =
CharEditDistance(C,O)

|C|
(7)

Since we are interested in recovering the original word
sequence rather than the character sequence, evaluations
are performed on lowercased and tokenized data. Note,
however, our system works on the original case OCR
data, and generates a sequence of word ids, that are con-
verted to a lowercase character sequence for evaluation.

We have divided the data, which has 29317 lines, into
10 equal size disjoint sets, and used the £rst 9 as the train-
ing data, and the £rst 500 lines of the last one as the test
data. The WER and CER for the English OCR system on
the French the test data were 18.31% and 5.01% respec-
tively. The numbers drop to 17.21% and 4.28% when
single character tokens and tokens with no alphabetical
characters are ignored. The WER and CER for the out-
put generated on French by the French OCR system were
5.98% and 2.11%.

4.1 Reduction of OCR Error Rates
We evaluated the performance of our model by studying
the reduction in WER and CER after correction. The in-
put to the system was original case, tokenized OCR out-
put, and the output of the system was a sequence of word
ids that are converted to lowercase character sequences
for evaluation.



Table 2: WER, CER, and reduction rates ignoring single characters and non-alphabetical tokens

Conditions Results
LM WC SG EM WER (%) Red. (%) CER (%) Red. (%)

Original OCR Output 17.21 - 4.28 -
Unigram 3 options None Sect. 9 3.97 76.93 1.68 60.75
Unigram 3 options None Sect. 1-9 3.62 78.97 1.60 62.62
Unigram 3 options None Sect. 5-9 3.61 79.02 1.58 63.08
Trigram 3 options None Sect. 5-9 3.52 79.55 1.56 63.55
Trigram Best case 2 way Sect. 5-9 3.15 81.70 1.14 73.36

All the results are summarized in Table 1. The condi-
tions side gives various parameters for each experiment.
The language model (LM) is either (word) unigram or
trigram. Word to character conversion (WC) can allow
3 case variations that are mentioned before, or simply
pick the most probable one for each word. Segmentation
(SG) can be disabled, or 2-way split and merges may be
allowed. Finally, the character level error model (EM)
may be trained on various subsets of training data. Ta-
ble 2 gives the adjusted results when ignoring all single
characters and tokens that do not contain any alphabeti-
cal character.

As can be seen from the tables, as we increase the
training size of character error model from 1 section to
5 sections, the performance increases. However there is
a slight decrease in performance when the training size
is increased to 9 sections. This suggests that our train-
ing procedures, while effective, may require re£nement
as additional training data becomes available. When we
replace the unigram language model with a trigram one,
the results improve as expected. However, the most in-
teresting case is the last experiment where 2-way word
merge/split errors are allowed.

Word merge/split errors cause an exponential increase
in the search space; when there are n words that needs
to be corrected together, there are Nn possible combina-
tions where N is the vocabulary size. We imposed vari-
ous restrictions on the model to reduce the search space
and achieve acceptable execution times. Despite the im-
posed restrictions, the ability to handle word merge/split
errors improves performance signi£cantly.

5 Related Work

There has been considerable research on automatically
correcting words in text in general, and correction of
OCR output in particular. Kukich [10] provides a general
survey of the research in the area. Unfortunately, there is
no commonly used evaluation base for OCR error cor-
rection, making comparison of experimental results dif-
£cult.

Some systems integrate the post-processor with the ac-
tual character recognizer to allow interaction between the
two. In an early study, Hanson et al. [11] reports a word
error rate of about 2% and a reject rate of 1%, without
a dictionary. Sinha and Prasada [12] achieves 97% word

recognition, ignoring punctuation, using an augmented
dictionary, a Viterbi style algorithm, and manual heuris-
tics.

Many systems treat OCR as a black box, generally em-
ploying word and/or character level n-grams along with
character confusion probabilities. Srihari et al. [13] is
one typical example and reports up to 87% error correc-
tion on arti£cial data, and relying (as we do) on a lexi-
con for correction. Goshtasby and Ehrich [14] presents
a method that based on probabilistic relaxation labeling,
using context characters to constrain the probability of
each character. They do not use a lexicon but do require
the probabilities assigned to individual characters by the
OCR system.

Jones et al. [15] describe an OCR post-processing sys-
tem comparable to ours, and reports error reductions of
70-90%. Their system is designed around a strati£ed al-
gorithm. The £rst phase performs isolated word correc-
tion using rewrite rules, allowing words that are not in the
lexicon. The second phase attempts correcting word split
errors, and the last phase uses word bigram probabilities
to improve correction. In comparison to our work, the
main difference is our focus on an end-to-end generative
model versus their strati£ed algorithm centered around
correction.

Pal et al. [16] describes a method for OCR error cor-
rection of an in¤ectional Indian language using morpho-
logical parsing, and reports correcting 84% of the words
with a single character error. Although it is limited to
single errors, the systems demonstrates the possibility
of correcting OCR errors in morphologically rich lan-
guages.

Although segmentation errors have been addressed to
some degree in previous work, to the best of our knowl-
edge our model is the £rst that explicitly incorporates
segmentation. Similarly, many systems make use of a
language model, a character confusion model, etc., but
none have developed an end-to-end model that formally
describes the OCR process from the generation of the
true word sequence to the output of the OCR system in
a manner that allows for statistical parameter estimation.
Our model is also the £rst to explicitly model the conver-
sion of a sequence of words into a character sequence.



6 Conclusions and Future Work
We have presented a ¤exible, modular, probabilistic gen-
erative OCR model designed speci£cally for ease of in-
tegration with probabilistic models of the sort commonly
found in recent NLP work, and for rapid retargeting of
OCR and NLP technology to new languages.

In a rigorous evaluation of post-OCR error correction
on real data, illustrating a scenario where a black-box
commercial English OCR system is retargeted to work
with French data, we obtained a 70% reduction in word
error rate over the English-on-French baseline, with a re-
sulting word accuracy of 97%. It is worth noting that
our post-OCR correction of the English OCR on French
text led to better performance than a commercial French
OCR system run on the same text.

We are currently working on improving the correc-
tion performance of the system, and extending our error
model implementation to include character context and
allow for character merge/split errors. We also intend to
relax the requirement of having a word list, so that the
model handles valid word errors.

Finally, we plan to challenge our model with other lan-
guages, starting with Arabic, Turkish, and Chinese. Ara-
bic and Turkish have phonetic alphabets, but also pose
the problem of rich morphology. Chinese will require
more work due to the size of its alphabet. We are op-
timistic that the power and ¤exibility of our modeling
framework will allow us to develop the necessary tech-
niques for these languages, as well as many others.
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